tune_cpdbee_3D.Rd
This function finds best parameters for 3D event detection using labeled data.
tune_cpdbee_3D(
x,
cl,
alpha_min = 0.95,
alpha_max = 0.98,
alpha_step = 0.01,
epsilon_min = 2,
epsilon_max = 12,
epsilon_step = 2,
minPts_min = 8,
minPts_max = 16,
minPts_step = 2
)
The data in an mxn matrix or dataframe.
The actual locations of the events.
The minimum threshold value.
The maximum threshold value.
The incremental step size for alpha.
The minimum epsilon value for DBSCAN clustering.
The maximum epsilon value for DBSCAN clustering.
The incremental step size for epsilon for DBSCAN clustering.
The minimum minPts value for for DBSCAN clustering.
The maximum minPts value for for DBSCAN clustering.
The incremental step size for minPts for DBSCAN clustering.
A list with following components
best
The best threshold, epsilon and MinPts for 2D event detection and the associated Jaccard Index.
all
All parameter values used and the associated Jaccard Index values.
if (FALSE) {
set.seed(1)
arr <- array(rnorm(12000),dim=c(40,25,30))
arr[25:33,12:20, 20:23] <- 10
# Getting events
out <- get_clusters_3d(arr, thres=0.985)
out <- tune_cpdbee_3D(arr, out$data[ ,1:3])
out$best
}